Dermoscopic Image Segmentation using Machine Learning Algorithm

نویسندگان

  • Padma Suresh
  • Krishna Veni
چکیده

Problem statement: Malignant melanoma is the most frequent type of skin cancer. Its incidence has been rapidly increasing over the last few decades. Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Approach: This study explains the task of segmenting skin lesions in Dermoscopy images based on intelligent systems such as Fuzzy and Neural Networks clustering techniques for the early diagnosis of Malignant Melanoma. The various intelligent systems based clustering techniques used were Fuzzy C Means Algorithm (FCM), Possibilistic C Means Algorithm (PCM), Hierarchical C Means Algorithm (HCM); C-mean based Fuzzy Hopfield Neural Network, Adaline Neural Network and Regression Neural Network. Results: The segmented images were compared with the ground truth image using various parameters such as False Positive Error (FPE), False Negative Error (FNE) Coefficient of similarity, spatial overlap and their performance was evaluated. Conclusion: The experimental results show that Hierarchical C Means algorithm( Fuzzy) provides better segmentation than other (Fuzzy C Means, Possibilistic C Means, Adaline Neural Network, FHNN and GRNN) clustering algorithms. Hierarchical C Means approach can handle uncertainties that exist in the data efficiently and useful for the lesion segmentation in a computer aided diagnosis system to assist the clinical diagnosis of dermatologists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions

In this paper we propose a machine learning approach to classify melanocytic lesions as malignant or benign, using dermoscopic images. The lesion features used in the classification framework are inspired on border, texture, color and structures used in popular dermoscopy algorithms performed by clinicians by visual inspection. The main weakness of dermoscopy algorithms is the selection of a se...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis

Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin lesion diagnosis. The search for better performing classification has been a relevant issue for pattern recognition in images. Hence, this work was particularly focused on skin lesion pattern recognition, especially in macroscopic and dermoscopic images. For the pattern recognition in macroscopic images, a c...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011